1,2,4-Triazolo[5,1-*i*]purine Derivatives as Highly Potent and Selective Human Adenosine A₃ Receptor Ligands

Takashi Okamura,^{*,†} Yasuhisa Kurogi,[†] Hiroshi Nishikawa,[†] Kinji Hashimoto,[†] Hiroshi Fujiwara,[†] and Yoshimitsu Nagao[‡]

Nutrition Research Institute, Otsuka Pharmaceutical Factory, Inc. Tateiwa, Muya-cho, Naruto, Tokushima 772-8601 Japan, and Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi 1, Tokushima 770-8505 Japan

Received December 17, 2001

A series of triazolopurines showed structural similarity to human adenosine A_3 receptor antagonist, 9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino][1,2,4]triazolo[1,5-c]quinazoline (MRS 1220, **1**). In this study, we found novel 1,2,4-triazolo[5,1-*i*]purine derivatives (**2**) showing human adenosine A_3 receptor affinities. The compounds were obtained in two steps from 5-amino-4-cyanoimidazole (**33**). The affinity was determined in radioligand binding assays for the cloned human adenosine A_1 , A_{2A} , A_{2B} , and A_3 receptors. After the structure–activity relationship was analyzed, we determined that there was a mild parabolic relationship between the length of alkyl groups at the 5-position and the affinities at the A_3 receptor and positive correlation between the length of the substituents on phenyl groups at the 8-position and the affinities at the A_{2A} receptor. These investigations led to potent and selective human adenosine A_3 receptor ligand (5-*n*-butyl-8-(4-methoxyphenyl)-3*H*-[1,2,4]triazolo-[5,1-*i*]purine (**27**, $K_i = 0.18$ nM) and the most selective A_3 receptor ligand against A_1 , A_{2A} , and A_{2B} receptors, (5-*n*-butyl-8-(4-*n*-propoxyphenyl)-3*H*-[1,2,4]triazolo-[5,1-*i*]purine (**29**, >19 600), were discovered.

Introduction

Adenosine is an important regulator for homeostasis of the brain, heart, kidney, and other organs.¹ Adenosine interacts with four different G-protein-coupled receptors classified as A₁, A_{2A}, A_{2B}, and A₃ receptor subtypes.² The A₁ and A₃ subtypes inhibit adenylate cyclase (AC) coupling to G_i protein, whereas A_{2A} and A_{2B} subtypes stimulate AC via G_s protein. Because the adenosine A₃ receptors were characterized in 1992,³ the physiological roles of the adenosine A₃ receptors have been investigated.

In 1996, Jacobson and co-workers disclosed potent and selective adenosine A_3 receptor antagonists of 1,4dihydropyridines,^{4–6} triazoloquinazolines (e.g., compound 1),^{7,8} and flavonoids.⁹ Recently, triazolonaphthyridines,¹⁰ isoquinolines,^{11,12} quinazolines,¹² pyrazolotriazolopyrimidines,¹³ and thiazoles¹⁴ have been reported as new adenosine A_3 receptor antagonists. Selective adenosine A_3 receptor antagonists are considered as potential antiinflammatory,¹⁵ antiasthmatic,¹⁶ antiischemic,¹⁷ and antiglaucoma agents.^{18,19}

A series of 1,2,4-triazolo[5,1-*i*]purine derivatives (2) were synthesized as hybrid scaffolds of adenine and 5-*n*-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-*a*]-pyrimidine (OT-7100, **3**). Compound **3** was synthesized in our laboratory. In experiments using rats, **3** has a unique profile with the effect of normalizing the nociceptive threshold in peripheral neuropathic pain²⁰ and diabetic neuropathy.²¹

^{*} To whom correspondence should be addressed. Tel: +81-88-684-2353. Fax: +81-88-686-8176. E-mail: okamurtk@otsukakj.co.jp.

[‡] The University of Tokushima.

Although 1,2,4-triazolo[5,1-*i*]purines (**2**) did not show analgesic activity in vivo, the structural similarity between **1** and 1,2,4-triazolo[5,1-*i*]purines (**2**) led us to evaluate adenosine A_3 receptor affinities. In this paper, selective adenosine A_3 receptor affinities of novel 1,2,4triazolo[5,1-*i*]purine derivatives (**2**) are described including structure–activity relationships (SAR). **Scheme 1.** Synthesis of 1,2,4-Triazolo[5,1-*i*]purine Derivatives^{*a*}

Method A

 a Reagents: (i) $R^1C(OY)_3$, DMF, 80 °C. (ii) $R^2CONHNH_2$, DMF or diglyme, reflux. (iii) 10% HCl, reflux. (iv) R^1COCl , pyridine. (v) TMSCl, Et_3N, THF, reflux.

Chemistry

1,2,4-Triazolo[5,1-*i*]purines (**2**) were prepared following the synthetic strategy (Scheme 1), which was modified from that of pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5*c*]pyrimidines.²² 5-Amino-4-cyanoimidazole (**33**) was transformed into imidates **34–38** by treatment with commercially available ortho esters at 80 °C in dimethyl formamide (DMF). The desired compounds (**4–7** and **10–32**) were obtained by refluxing the imidates with the corresponding acylhydrazines in DMF or diglyme (method A).

On the other hand, **8** and **9** with a long alkyl chain at the R¹ position were synthesized from 5-methyl-8phenyl-3H-[1,2,4]triazolo[5,1-*i*]purine (**4**) using commercially available *n*-hexanoyl and *n*-heptanoyl chloride (method B), because of the unavailability of trialkyl ortho-*n*-hexanoate or ortho-*n*-heptanoate. Compound **4** was converted into an aminoimidazole derivative (**39**) by hydrolysis with aqueous 10% HCl. The acylation of **39** with the corresponding acyl chlorides afforded the intermediates **40** and **41**. The cyclization of **40** and **41**

Table 1. Affinities of 1,2,4-Triazolo[5,1-*i*]purine Derivatives in Radioligand Binding Assays at Human A_{2A} and A_3

			IC ₅₀ (1 % inhi	nM) or bition ^c		
compd	\mathbb{R}^1	\mathbb{R}^2	hA _{2A} ^a	hA ₃ ^b	hA2A/hA3	
4	CH ₃	Ph	550	1.0	550	
5	C_2H_5	Ph	360	0.45	800	
6	n-C ₃ H ₇	Ph	120	0.23	520	
7	n-C ₄ H ₉	Ph	71	0.25	280	
8	<i>n</i> -C ₅ H ₁₁	Ph	200	0.30	670	
9	n-C ₆ H ₁₃	Ph	7800	0.61	13 000	
10	Ph	Ph	23	0.41	56	
11	<i>n</i> -C ₄ H ₉	CH_3	46	610	0.075	
12	<i>n</i> -C ₄ H ₉	PhCH ₂	47	680	0.069	
13	<i>n</i> -C ₄ H ₉	3-pyridyl	900	1.2	750	
14	<i>n</i> -C ₄ H ₉	2-furyl	210	5.9	36	
15	<i>n</i> -C ₄ H ₉	2-Cl-Ph	18	0.29	62	
16	<i>n</i> -C ₄ H ₉	3-Cl-Ph	56	1.1	51	
17	<i>n</i> -C ₄ H ₉	4-Cl-Ph	2600	0.41	6300	
18	<i>n</i> -C ₄ H ₉	4-F-Ph	510	0.25	2000	
19	<i>n</i> -C ₄ H ₉	4-Br-Ph	3300	1.9	1700	
20	<i>n</i> -C ₄ H ₉	3-CH ₃ -Ph	188	0.27	700	
21	<i>n</i> -C ₄ H ₉	4-CH ₃ -Ph	180	0.33	550	
22	<i>n</i> -C ₄ H ₉	4- <i>t</i> -C ₄ H ₉ -Ph	20%	1.2	>8300	
23	<i>n</i> -C ₄ H ₉	4-CF ₃ -Ph	28%	0.61	>16 000	
24	<i>n</i> -C ₄ H ₉	4-Biphenyl	12%	5.0	>2000	
25	<i>n</i> -C ₄ H ₉	4-HO-Ph	58	1.8	32	
26	<i>n</i> -C ₄ H ₉	3-CH₃O-Ph	67	0.22	300	
27	<i>n</i> -C ₄ H ₉	4-CH₃O-Ph	1600	< 0.1	>16 000	
28	<i>n</i> -C ₄ H ₉	4-C ₂ H ₅ O-Ph	3800	0.21	18 000	
29	<i>n</i> -C ₄ H ₉	4 <i>-n</i> -C ₃ H ₇ O-Ph	9%	0.30	>33 000	
30	<i>n</i> -C ₄ H ₉	3,4,5-(CH ₃ O) ₃ -Ph	2500	1.1	2300	
31	<i>n</i> -C ₄ H ₉	4-CH ₃ S-Ph	42%	3.3	>3000	
32	<i>n</i> -C ₄ H ₉	4-(CH ₃) ₂ N-Ph	0%	0.67	>15 000	

^{*a*} Displacement of specific [³H]CGS 21680 binding at human A_{2A} receptors expressed in HEK-293 cells, in membranes, expressed as IC₅₀ in nanomolar (*n* = 2); CV = 4.3%. ^{*b*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK-293 cells, in membranes, expressed as IC₅₀ in nanomolar (*n* = 2); CV = 7.2%. ^{*c*} Displacement of specific binding at 10 000 nM concentration.

was performed by treatment with trimethylsilyl chloride to provide the desired compounds **8** and **9**. Yields and characterizations are shown in the Experimental Section.

Results and Discussion

The binding affinities of 4-32 at human adenosine A_{2A} and A_3 receptors expressed in HEK-293 cells are shown in Table 1. As initially observed among compounds 4-10 bearing an unsubstituted phenyl group at the R^2 position, there was a mild parabolic relationship between the length of the R^1 position and the affinities to the A_3 receptor. Among compounds (7 and 11-14) with a butyl group at the R^1 position and structurally diverse substituents at the R^2 position, 7 bearing a phenyl group at the R^2 position resulted in the highest A_3 receptor affinity.

Furthermore, compounds **15–32** bearing a substituted phenyl group at the R^2 position were evaluated. By analyzing SAR of these compounds, the length of substituents at the para position on phenyl group seems to correlate positively with the binding affinities (IC₅₀)

Table 2. Binding Affinities at Adenosine A1, A2A, A2B, and A3 Receptors of Compounds 1, 23, 27–29, 32, 42, and 43

		$K_{ m i}({ m nM})^a$ or					
compd	hA ₁ ^c	hA_{2A} d	hA _{2B} ^e	hA ₃ ^f	hA1/hA3	hA2A/hA3	hA2B/hA3
23	$4\pm2\%$	$31\pm4\%$	$6\pm11\%$	0.95 (0.72-1.24)	>10 500	>10 500	>10 500
27	398 (256–620)	892 (811-982)	1030 (772–1390)	0.18 (0.17-0.20)	2210	4960	5720
28	413 (335–509)	572 (438-749)	838 (640-1100)	0.90 (0.58-1.40)	459	636	931
29	$32\pm0\%$	$49\pm2\%$	$21\pm3\%$	0.51 (0.35-0.74)	>19 600	>19 600	>19 600
32	1310 (983–1730)	$49\pm3\%$	6660 (3580-12 400)	1.25 (0.82-1.91)	1050	>8000	5330
1 ^h	305 ± 51^{g}	52.0 ± 8.8^{g}		0.65 ± 0.25	470 ^g	80 ^g	
42 ^h	1200 (1030-1400)	140 (120–155)	2056 (1640-2580)	0.80 (0.63-1.00)	1500	175	2570
43 ^h	>10 000	>10 000		18	>556	>556	

^{*a*} Data are expressed as geometric means, with 95% confidence intervals. ^{*b*} A percentage of specific binding displaced at 10 000 nM concentration, mean \pm SEM (n = 2-3). ^{*c*} Displacement of specific [3H]DPCPX binding at human A₁ receptors expressed in CHO cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*d*} Displacement of specific [³H]DCPX binding at human A_{2A} receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*e*} Displacement of specific [³H]DPCPX binding at human A_{2B} receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*e*} Displacement of specific [³H]DPCPX binding at human A_{2B} receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} Displacement of specific [¹²⁵I]AB-MECA binding at human A₃ receptors expressed in HEK cells, in membranes, expressed as K_i in nanomolar (n = 3). ^{*f*} At rat A₁ and A_{2A} receptors. ^{*h*} Values taken from refs 7, 10, and 22.

at A_{2A} receptors. In fact, a series of unsubstituted (7), fluoro (18), chloro (17), bromo (19), and trifluoromethyl (23) derivatives and a series of hydroxy (25), methoxy (27), ethoxy (28), and *n*-propoxy (29) derivatives showed a positive correlation between the length and the A_{2A} affinity. On the other hand, no significant difference was observed regarding the affinity at A_3 receptors. Electrondonating and -withdrawing substituents on the phenyl group at the R^2 position were also unaffected by the binding affinities at A_{2A} and A_3 receptors.

Potent and highly selective compounds (**23**, **27**–**29**, and **32**) were evaluated for the binding affinity as K_i values at four human adenosine receptor subtypes including A_1 and A_{2B} , as shown in Table 2.

The potent and selective affinities to human adenosine A_3 receptors against A_1 , A_{2A} , and A_{2B} receptors were observed. Compound **27** was the most potent A_3 ligand ($K_i = 0.18$ nM), and compound **29** was the most selective A_3 ligand against other subtypes (>19 600) in this series. In comparison to the most selective adenosine A_3 receptor antagonists contained in the literature, compound **29** had potent and selective affinities to human adenosine A_3 receptors. For example, 5-[[(4-methoxyphenyl)amino]carbonyl]amino-8-propyl-2-(2-furyl)pyrazolo[4,3-*e*]1,2,4-triazolo[1,5-*c*]pyrimidine (MRE3008F20, **42**)²² and 5-amino-3-(4-methoxyphenyl)thiazolo[3,2-*a*]pyrimidin-7-one (L268605, **43**)¹⁰ indicated hA₃ = 0.80 nM, hA₁/hA₃ = 1496, hA_{2A}/hA₃ = 175, hA_{2B}/hA₃ = 2570, and hA₃ = 18 nM, hA₁/hA₃ > 556, hA_{2A}/hA₃ > 556, respectively. Very recently, Baraldi et al. reported new human adenosine A₃ receptor antagonists with the good profile (e.g., compound **44**, hA₃ = 0.16 nM, hA₁/hA₃ = 3713, hA_{2A}/hA₃ = 2381, and hA_{2B}/hA₃ = 1388).²³

Conclusion

Novel 1,2,4-triazolo[5,1-*i*]purine derivatives (**2**) were synthesized by the modified method of pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidines, which showed high and selective adenosine A_3 receptor affinity. As a result of SAR analysis, the most potent and selective human adenosine A_3 receptor ligands, **27** and **29**, were found. These potent human adenosine A_3 receptor ligands might be useful as pharmacological probes and good therapeutic agents.

Experimental Section

Column chromatography was performed on silica gel 60 (Merck, particle size 63–200 mm). All melting points were determined on a Yamato micromelting point apparatus (MP-21). ¹H nuclear magnetic resonance (NMR) spectra were measured on a JEOL GX-270 (270 MHz) and a JEOL JNM-AL400 (400 MHz; compounds **32**, **40**, and **41**) spectrometer, and chemical shifts are indicated in δ units from tetramethylsilane (TMS) as an internal standard. Elemental analyses were performed by the analytical department of Wako Pure Chemical Industries, Ltd. or the University of Tokushima and were within ±0.4% of the calculated values.

Method A. General Procedure for Preparation of Imidates 34–38. A mixture of 5-amino-4-cyano-1*H*-imidazole (**33**, 0.14 mol) and the appropriate ortho ester derivative (0.21 mol) in 30–40 mL of DMF was heated at 90 °C for 0.5–5 h. After the solvent was evaporated, product was recrystallized from ethyl acetate (AcOEt) and hexane.

Methyl N-(4-Cyano-1*H***-imidazol-5-yl)acetimidate (34).** Yield 93%; colorless powder. ¹H NMR (DMSO- d_6): δ 2.04 (3H, s), 3.78 (3H, s), 7.67 (1H, s), 12.5–13.0 (1H, brs).

Ethyl N-(4-Cyano-1*H*-imidazol-5-yl)propionimidate (35). Yield 66%; colorless powder. ¹H NMR (CDCl₃): δ 1.17 (3H, t, *J* = 7.9 Hz), 1.34 (3H, t, *J* = 7.4 Hz), 2.42 (2H, q, *J* = 7.9 Hz), 4.26 (2H, q, *J* = 7.4 Hz), 7.49 (1H, s), 10.9–11.7 (1H, brs).

Methyl *N***-(4-Cyano-1***H***-imidazol-5-yl)butyrimidate (36).** Yield 79%; colorless powder. ¹H NMR (CDCl₃): δ 0.89 (3H, t, J = 7.2 Hz), 1.5–1.7 (2H, m), 2.40 (2H, t, J = 7.4 Hz),3.84 (3H, s), 7.50 (1H, s), 10.7–11.3 (1H, brs).

Methyl *N*-(4-Cyano-1*H*-imidazol-5-yl)pentanimidate (37). Yield 96%; colorless powder. ¹H NMR (CDCl₃): δ 0.86 (3H, t, J = 6.9 Hz), 1.2–1.4 (2H, m), 1.5–1.7 (2H, m), 2.43 (2H, t, J = 7.4 Hz), 3.83 (3H, s), 7.46 (1H, s), 10.1–10.5 (1H, brs).

Methyl *N***·(4-Cyano-1***H***·imidazol-5-yl)benzimidate (38).** Yield 90%; colorless powder. ¹H NMR (CDCl₃): δ 4.01 (3H, s), 7.2–7.5 (6H, m), 10.2–10.7 (1H, brs).

General Procedure for the Synthesis of 1,2,4-Triazolo-[5,1-*i*]**purine Derivatives** 4–7 **and 10–32.** A mixture of the imidate **34–38** (4.85 mmol) and the corresponding acylhydrazine (5.34 mmol) in 10 mL of DMF or 2-methoxyethyl ether (diglyme) was refluxed for 3–24 h. One hundred milliliters of aqueous 50% ethanol was added to the reaction mixture at 80 °C. After it was cooled at room temperature, the precipitate was filtrated and washed with aqueous 50% ethanol. The filtrate was recrystallized from aqueous ethanol or aqueous methanol.

5-Methyl-8-phenyl-3*H***·[1,2,4]triazolo[5,1-***i***]purine (4).** Yield 90%; colorless powder; mp >285 °C. ¹H NMR (DMSO d_6): δ 3.03 (3H, s), 7.5–7.7 (3H, m), 8.3–8.4 (2H, m), 8.48 (1H, s), 13.6–14.1 (1H, brs). Anal. (C₁₃H₁₀N₆) C, H, N.

5-Ethyl-8-phenyl-3*H***·[1,2,4]triazolo[5,1-***i***]purine (5).** Yield 87%; colorless powder; mp 253–255 °C. ¹H NMR (DMSO-*d*₆): δ 1.46 (3H, t, J = 7.4 Hz), 3.39 (2H, q, J = 7.4 Hz), 7.5–7.7 (3H, m), 8.2–8.3 (2H, m), 8.43 (1H, s), 13.6–14.0 (1H, brs). Anal. (C₁₄H₁₂N₆·0.75H₂O) C, H, N.

8-Phenyl-5-*n***-propyl-3***H***-[1,2,4]triazolo**[**5,1-***i*]**purine (6).** Yield 88%; colorless powder; mp 230–233 °C. ¹H NMR (DMSO d_6): δ 1.07 (3H, t, J = 7.4 Hz), 1.9–2.1 (2H, m), 3.33 (2H, t, J= 7.7 Hz), 7.5–7.7 (3H, m), 8.2–8.3 (2H, m), 8.43 (1H, s), 13.6– 14.1 (1H, brs). Anal. (C₁₅H₁₄N₆·H₂O) C, H, N.

5-*n***-Butyl-8-phenyl-3***H***-[1,2,4]triazolo[5,1-***i***]purine (7). Yield 92%; colorless powder; mp 238–240 °C. ¹H NMR (DMSOd_6): \delta 1.05 (3H, t, J = 7.4 Hz), 1.5–1.6 (2H, m), 1.9–2.1 (2H, m), 3.43 (2H, t, J = 7.4 Hz), 7.6–7.7 (3H, m), 8.3–8.4 (2H, m), 8.50 (1H, s), 13.6–14.2 (1H, brs). Anal. (C₁₆H₁₆N₆+1.2H₂O) C, H, N.**

5,8-Diphenyl-3*H***-[1,2,4]triazolo[5,1-***i***]purine (10). Yield 46%; colorless powder; mp 268–269 °C. ¹H NMR (DMSO-***d***₆): d. 7.5–7.6 (3H, m), 7.6–7.7 (3H, m), 8.2–8.3 (2H, m), 8.3–8.4 (2H, m), 8.54 (1H, s), 13.7–14.2 (1H, brs). Anal. (C₁₈H₁₂N₆· 0.25H₂O) C, H, N.**

5-*n***-Butyl-8-methyl-3***H***-[1,2,4]triazolo[5,1-***i***]purine (11). Yield 45%; colorless powder; mp 252–254 °C. ¹H NMR (DMSOd_6): \delta 0.95 (3H, t, J = 7.2 Hz), 1.3–1.5 (2H, m), 1.8–2.0 (2H, m), 2.54 (3H, s), 3.25 (2H, t, J = 7.9 Hz), 8.38 (1H, s). Anal. (C₁₁H₁₄N₆) C, H, N.**

8-Benzyl-5-*n***-butyl-3***H***-[1,2,4]triazolo**[**5,1-***i*]**purine (12).** Yield 80%; colorless prisms; mp 197–200 °C. ¹H NMR (DMSO d_6): δ 0.95 (3H, t, J = 7.2 Hz), 1.3–1.5 (2H, m), 1.8–2.0 (2H, m), 3.28 (2H, t, J = 7.9 Hz), 4.25 (2H, s), 7.2–7.5 (5H, m), 8.38 (1H, s). Anal. (C₁₇H₁₈N₆) C, H, N.

5-*n*-**Butyl-8**-(**3**-**pyridyl**)-**3***H*-[**1**,**2**,**4**]**triazolo**[**5**,**1**-*i*]**purine** (**13**). Yield 38%; colorless powder; mp >220 °C (dec). ¹H NMR (DMSO-*d*₆): δ 0.98 (3H, t, J = 7.4 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.38 (2H, t, J = 7.4 Hz), 7.62 (1H, dd, J = 5.0, 7.9 Hz), 8.44 (1H, s), 8.59 (1H, d, J = 7.9 Hz), 8.75 (1H, d, J = 5.0 Hz), 9.42 (1H, s). Anal. (C₁₅H₁₅N₇) C, H, N; C: calcd, 61.42; found, 52.29. N: calcd, 33.43; found, 28.30.

5-*n***-Butyl-8-(2-furyl)-3***H***-[1,2,4]triazolo[5,1-***f***]purine (14). Yield 64%; colorless powder; mp 255–256 °C. ¹H NMR (DMSOd_6): \delta 0.97 (3H, t, J = 7.4 Hz), 1.4–1.5 (2H, m), 1.8–2.0 (2H, m), 3.33 (2H, t, J = 7.4 Hz), 6.75 (1H, dd, J = 2.0, 3.5 Hz), 7.29 (1H, d, J = 3.5 Hz), 7.97 (1H, d, J = 2.0 Hz), 8.43 (1H, s), 13.6–14.0 (1H, brs). Anal. (C₁₄H₁₄N₆O) C, H, N.**

5-*n***Butyl-8-(2-chlorophenyl)-3***H***-[1**,**2**,**4**]triazolo[5,1-*i*]**purine (15).** Yield 80%; colorless powder; mp 177–179 °C. ¹H NMR (DMSO- d_6): δ 0.96 (3H, t, J = 7.4 Hz), 1.4–1.5 (2H, m), 1.9–2.0 (2H, m), 3.36 (2H, t, J = 7.5 Hz), 7.5–7.7 (3H, m), 8.0–8.2 (1H, m), 8.47 (1H, s). Anal. (C₁₆H₁₅N₆Cl·0.5H₂O) C, H, N.

5-*n*-Butyl-8-(3-chlorophenyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (16). Yield 80%; colorless powder; mp 218–221 °C. ¹H NMR (DMSO- d_6): δ 0.98 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.34 (2H, t, J = 7.7 Hz), 7.6–7.7 (2H, m), 8.2–8.3 (2H, m), 8.43 (1H, s). Anal. (C₁₆H₁₅N₆Cl) C, H, N.

5-*n*-Butyl-8-(4-chlorophenyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (17). Yield 88%; colorless powder; mp 273–275 °C. ¹H NMR (DMSO-*d*₆): δ 0.98 (3H, t, J = 6.9 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.35 (2H, t, J = 7.4 Hz), 7.64 (2H, d, J = 8.4Hz), 8.27 (2H, d, J = 8.4 Hz), 8.43 (1H, s), 13.6–14.0 (1H, brs). Anal. (C₁₆H₁₅N₆Cl) C, H, N.

5-*n*-Butyl-8-(4-fluorophenyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (18). Yield 85%; colorless powder; mp 259–260 °C. ¹H NMR (DMSO-*d*₆): δ 0.98 (3H, t, J = 7.4 Hz), 1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 3.36 (2H, t, J = 7.7 Hz), 7.41 (2H, t, J = 8.9 Hz), 8.31 (2H, dd, J = 6.4, 8.9 Hz), 8.43 (1H, s). Anal. (C₁₆H₁₅N₆F) C, H, N.

8-(4-Bromophenyl)-5-*n***-butyl-3***H***-[1,2,4]triazolo[5,1-***i***]**-**purine (19).** Yield 81%; colorless needles; mp 280–282 °C. ¹H NMR (DMSO-*d*₆): δ 0.98 (3H, t, J = 7.4 Hz), 1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 3.35 (2H, t, J = 7.4 Hz), 7.78 (2H, d, J = 8.4 Hz), 8.21 (2H, d, J = 8.4 Hz), 8.43 (1H, s). Anal. (C₁₆H₁₅N₆Br) C, H, N.

5-*n***-Butyl-8-(3-tolyl)-3***H***-[1,2,4]triazolo[5,1-***i***]purine (20). Yield 70%; colorless powder; mp 201–204 °C. ¹H NMR (DMSOd_6): \delta 0.98 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 2.43 (3H, s), 3.34 (2H, t, J = 7.7 Hz), 7.35 (1H, d, J = 7.7 Hz), 7.45 (1H, t, J = 7.7 Hz), 8.07 (1H, d, J = 7.7 Hz), 8.08 (1H, s), 8.42 (1H, s), 13.5–14.0 (1H, brs). Anal. (C₁₇H₁₈N₆·H₂O) C, H, N.**

5-*n*-Butyl-8-(4-tolyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (21). Yield 74%; colorless powder; mp 254–255 °C. ¹H NMR (DMSO d_6): δ 0.98 (3H, t, J = 7.4 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 2.40 (3H, s), 3.35 (2H, t, J = 7.4 Hz), 7.38 (2H, d, J = 7.9 Hz), 8.16 (2H, d, J = 7.9 Hz), 8.42 (1H, s), 13.5–14.0 (1H, brs). Anal. (C₁₇H₁₈N₆) C, H, N.

5-*n***-Butyl-8-(4-***t***-butylphenyl)-3***H***-[1,2,4]triazolo[5,1-***i***]purine (22). Yield 67%; colorless powder; mp 242–244 °C. ¹H NMR (DMSO-***d***₆): \delta 0.98 (3H, t,** *J* **= 7.2 Hz), 1.35 (9H, s), 1.4– 1.5 (2H, m), 1.9–2.0 (2H, m), 3.36 (2H, t,** *J* **= 7.7 Hz), 7.60 (2H, d,** *J* **= 8.2 Hz), 8.21 (2H, d,** *J* **= 8.2 Hz), 8.42 (1H, s). Anal. (C₂₀H₂₄N₆) C, H, N.**

5-*n***-Butyl-8-(4-trifluoromethylphenyl)-3***H***-[1,2,4]triazolo-[5,1-***i***]purine (23). Yield 69%; colorless powder; mp 278–280 °C. ¹H NMR (DMSO-***d***₆): \delta 0.98 (3H, t,** *J* **= 7.2 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.33 (2H, t,** *J* **= 7.7 Hz), 7.92 (2H, d,** *J* **= 7.9 Hz), 8.43 (1H, s), 8.44 (2H, d,** *J* **= 7.9 Hz). Anal. (C₁₇H₁₅N₆F₃) C, H, N.**

8-(Biphenyl-4-yl)-5-*n***-butyl-3***H***-[1,2,4]triazolo[5,1-***i***]purine (24).** Yield 79%; colorless powder; mp 244–246 °C. ¹H NMR (DMSO-*d*₆): δ 0.99 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.38 (2H, t, J = 7.7 Hz), 7.3–7.6 (3H,m), 7.78 (2H, d, J = 8.2 Hz), 7.89 (2H, d, J = 7.7 Hz), 8.36 (2H, d, J = 7.7 Hz), 8.43 (1H, s). Anal. (C₂₂H₂₀N₆) C, H, N.

5-*n*-Butyl-8-(4-hydroxyphenyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (25). Yield 87%; colorless powder; mp >285 °C. ¹H NMR (DMSO- d_6): δ 0.98 (3H, t, J = 7.4 Hz), 1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 3.34 (2H, t, J = 6.9 Hz), 6.94 (2H, d, J = 8.9Hz), 8.11 (2H, d, J = 8.9 Hz), 8.40 (1H, s), 9.7–10.2 (1H, brs), 13.3–14.2 (1H, brs). Anal. (C₁₆H₁₆N₆O·1.8H₂O) C, H, N.

5-*n*-Butyl-8-(3-methoxyphenyl)-3*H*-[1,2,4]triazolo[5,1*i*]purine (26). Yield 74%; colorless prisms; mp 183–185 °C. ¹H NMR (DMSO- d_6): δ 0.98 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 3.36 (2H, t, J = 7.9 Hz), 3.88 (3H, s), 7.12 (1H, d, J = 8.4 Hz), 7.49 (1H, dd, J = 7.7, 8.4 Hz), 7.79 (1H, s), 7.86 (1H, d, J = 7.7 Hz), 8.43 (1H, s), 13.6–14.0 (1H, brs). Anal. ($C_{17}H_{18}N_6O$) C, H, N.

5-*n***-Butyl-8-(4-methoxyphenyl)-3***H***-[1,2,4]triazolo[5,1***i***]purine (27).** Yield 70%; colorless powder; mp 237–240 °C. ¹H NMR (DMSO-*d*₆): δ 0.98 (3H, t, *J* = 7.4 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.34 (2H, t, J = 7.4 Hz), 3.86 (3H, s),7.11 (2H, d, J = 8.9 Hz), 8.20 (2H, d, J = 8.9 Hz), 8.41 (1H, s). Anal. (C₁₇H₁₈N₆O) C, H, N.

5-*n*-Butyl-8-(4-ethoxyphenyl)-3*H*-[1,2,4]triazolo[5,1-*i*]purine (28). Yield 71%; colorless powder; mp 241–243 °C. ¹H NMR (DMSO- d_6): δ 0.98 (3H, t, J = 7.2 Hz), 1.38 (3H, t, J =6.9 Hz),1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 3.34 (2H, t, J = 7.4Hz), 4.12 (2H, q, J = 6.9 Hz),7.09 (2H, d, J = 8.7 Hz), 8.19 (2H, d, J = 8.7 Hz), 8.41 (1H, s). Anal. (C₁₈H₂₀N₆O) C, H, N.

5-*n***-Butyl-8-(4-***n***-propoxyphenyl)-3***H***-[1,2,4]triazolo[5,1-***i***]purine (29). Yield 87%; colorless powder; mp 233–235 °C. ¹H NMR (DMSO-d_6): \delta 0.9–1.1 (6H, m), 1.4–1.6 (2H, m), 1.7–1.8 (2H, m), 1.9–2.0 (2H, m), 3.34 (2H, t, J = 7.7 Hz), 4.02 (2H, t, J = 6.4 Hz), 7.11 (2H, d, J = 8.4 Hz), 8.19 (2H, d, J = 8.4 Hz), 8.41 (1H, s). Anal. (C₁₉H₂₂N₆O) C, H, N.**

5-*n*-Butyl-8-(3,4,5-trimethoxyphenyl)-3*H*-[1,2,4]triazolo-[5,1-*i*]purine (30). Yield 82%; colorless powder; mp 191–193 °C. ¹H NMR (DMSO- d_6): δ 0.99 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.8–2.0 (2H, m), 3.33 (2H, t, J = 7.7 Hz), 3.78 (3H, s), 3.92 (6H, s), 7.52 (2H, s), 8.41 (1H, s), 13.5–14.1 (1H, brs). Anal. (C₁₉H₂₂N₆O₃·H₂O) C, H, N.

5-*n***-Butyl-8-(4-methylthiophenyl)-3***H***-[1,2,4]triazolo-[5,1-***i***]purine (31). Yield 56%; colorless powder; mp 264–265 °C. ¹H NMR (DMSO-d_6): \delta 0.98 (3H, t, J = 7.2 Hz), 1.4–1.6 (2H, m), 1.9–2.0 (2H, m), 2.56 (3H, s), 3.35 (2H, t, J = 7.4 Hz), 7.44 (2H, d, J = 8.7 Hz), 8.19 (2H, d, J = 8.7 Hz), 8.41 (1H, s). Anal. (C₁₇H₁₈N₆S) C, H, N.**

5-*n***-Butyl-8-(4-dimethylaminophenyl)-3***H***-[1,2,4]triazolo-[5,1-***i***]purine (32). Yield 79%; colorless powder; mp 236–240 °C. ¹H NMR (DMSO-d_6): \delta 0.98 (3H, t, J = 7.5 Hz), 1.4–1.5 (2H, m), 1.9–2.0 (2H, m), 3.01 (6H, s), 3.33 (2H, t, J = 7.9 Hz), 6.84 (2H, d, J = 8.7 Hz), 8.08 (2H, d, J = 8.7 Hz), 8.38 (1H, s), 13.4–14.2 (1H, brs). Anal. (C₁₈H₂₁N₇) C, H, N.**

Method B. 5-Amino-4-(3-phenyl-1*H*-1,2,4-triazol-5-yl)-1*H*-imidazole (39). Compound 4 (1.6 g, 6.4 mmol) in 16 mL of 10% hydrochloric acid was heated at reflux temperature for 1 h. After it was cooled, the mixture was carefully basified with 25% aqueous ammonia solution. The resulting precipitate was collected by filtration and then recrystallized with aqueous ethanol. Yield 1.2 g (83%); colorless powder. ¹H NMR (DMSO d_6): δ 5.4–5.8 (2H, brs), 7.2–7.6 (4H, m), 8.06 (2H, d, J=7.9 Hz), 11.4–11.8 (1H, brs), 13.5–14.0 (1H, brs).

General Procedure for the Synthesis of 5-(N-Alkanoylamino)-4-(3-phenyl-1H-1,2,4-triazol-5-yl)-1H-imidazole 40 and 41. *n*-Hexanoyl or *n*-heptanoyl chloride (30.9 mmol) was added dropwise to a suspension of **39** (8.8 mmol) in 20 mL of pyridine at 0 °C. The reaction mixture was stirred for 0.5–1 h at 0 °C and then for 16 h at room temperature. Followed by the addition of methanol (20–40 mL), the mixture was refluxed for 1 h. After it was cooled, a precipitate was collected and washed with methanol.

5-(N-n-Hexanoylamino)-4-(3-phenyl-1H-1,2,4-triazol-5-yl)-1H-imidazole (40). Yield 66%; colorless powder. ¹H NMR (DMSO-*d*₆): δ 0.8–1.0 (3H, brs), 1.2–1.4 (4H, brs), 1.6–1.8 (2H, brs), 2.3–2.6 (2H, brs), 7.4–7.6 (4H, m), 8.0–8.2 (2H, m), 9.8–10.2 (1H, brs), 12.4–13.0 (1H, brs), 14.0–14.4 (1H, brs).

5-(N-n-Heptanoylamino)-4-(3-phenyl-1H-1,2,4-triazol-5-yl)-1H-imidazole (41). Yield 67%; colorless powder. ¹H NMR (DMSO-*d*₆): δ 0.8–1.0 (3H, brs), 1.2–1.4 (4H, brs), 1.3– 1.5 (2H, brs), 1.6–1.8 (2H, brs), 2.3–2.6 (2H, brs), 7.4–7.6 (4H, m), 8.0–8.2 (2H, m), 9.8–10.3 (1H, brs), 12.4–13.0 (1H, brs), 13.9–14.5 (1H, brs).

General Procedure for the Synthesis of 5-Alkyl-8phenyl-3H-[1,2,4]triazolo[5,1-1]purine 8 and 9. Chlorotrimethylsilane (4.9 mmol) was added dropwise to a suspension of the *N*-acylated aminoimidazole **40** or **41** (1.2 mmol) in 8 mL of tetrahydrofurane (THF) and triethylamine (9.9 mmol). The reaction mixture was refluxed for 24–72 h. After it was cooled, the reaction was quenched by adding cold water. The crude product was extracted with AcOEt and dried with sodium sulfate. The solvent was evaporated, and the residue was purified by column chromatography using CHCl₃/CH₃OH (25: 1) as the eluent. Recrystallization from aqueous methanol gave the corresponding product **8** or **9** as a colorless powder. **5**-*n*-**Pentyl-8-phenyl-3***H***-[1,2,4]triazolo[5,1-***i***]purine (8).** Yield 40%; colorless powder; mp 219–220 °C. ¹H NMR (DMSO d_6): δ 0.91 (3H, t, J = 6.9 Hz), 1.3–1.5 (4H, m), 1.9–2.0 (2H, m), 3.36 (2H, t, J = 7.4 Hz), 7.5–7.6 (3H, m), 8.2–8.3 (2H, m), 8.43 (1H, s). Anal. (C₁₆H₁₆N₆·1.2H₂O) C, H, N.

5-*n***-Hexyl-8-phenyl-3***H***-[1,2,4]triazolo[5,1-***i***]purine (9). Yield 65%; colorless powder; mp 205–209 °C. ¹H NMR (DMSOd_6): \delta 0.88 (3H, t, J = 7.2 Hz), 1.2–1.6 (6H, m), 1.9–2.0 (2H, m), 3.36 (2H, t, J = 7.7 Hz), 7.4–7.7 (3H, m), 8.2–8.3 (2H, m), 8.43 (1H, s), 13.6–14.1 (1H, brs). Anal. (C₁₇H₁₈N₆) C, H, N.**

Human Cloned Adenosine A₁, A_{2A}, A_{2B}, and A₃ Receptor Binding Assay. Binding of [³H]DPCPX to Chinese hamster ovary cells transfected with the human recombinant A₁ adenosine receptor was performed as previously described.²⁴ Displacement experiments were performed for 60 min at 22 °C in 0.25 mL of 50 mM Tris-HCl buffer, 5 mM MgCl₂, 1 mM EDTA at pH 7.4, 2 units/mL adenosine deaminase containing 1 nM [³H]DPCPX, diluted membranes (20 μ g of protein/assay), and eight different concentrations of examined compounds. Nonspecific binding was determined in the presence of 1 μ M DPCPX.

Binding of [³H]CGS 21680 to HEK-293 cells transfected with the human recombinant A_{2A} adenosine receptor was performed as previously described.²⁵ Displacement experiments were performed for 90 min at 22 °C in 0.25 mL of 50 mM Tris-HCl buffer, 10 mM MgCl₂ at pH 7.4, 2 units/mL adenosine deaminase containing 6 nM [³H]CGS 21680, diluted membranes (50 μ g of protein/assay), and at least 3–8 different concentrations of examined compounds. Nonspecific binding was determined in the presence of 10 μ M NECA.

Binding of [³H]DPCPX to HEK-293 cells transfected with the human recombinant A_{2B} adenosine receptor was performed as previously described.²⁶ Displacement experiments were performed for 120 min at 22 °C in 0.50 mL of 10 mM Hepes-Tris buffer, 1 mM MgCl₂, 1 mM EDTA at pH 7.4, containing 5 nM [³H]DPCPX, diluted membranes (500 μ g of protein/assay), and eight different concentrations of examined compounds. Nonspecific binding was determined in the presence of 100 μ M NECA.

Binding of [¹²⁵I]AB-MECA to HEK-293 cells transfected with the human recombinant A_3 adenosine receptor was performed as previously described.²⁷ Displacement experiments were performed for 90 min at 22 °C in 0.25 mL of 50 mM Tris-HCl buffer, 5 mM MgCl₂, 1 mM EDTA at pH 7.4, 2 units/mL adenosine deaminase containing 0.1 nM [¹²⁵I]AB-MECA, diluted membranes (20 μ g of protein/assay), and at least 3–8 different concentrations of examined compounds. Nonspecific binding was determined in the presence of 1 μ M IB-MECA.

Acknowledgment. We thank Dr. S. Sato, Dr. K. Miyata, Mr. K. Kiryu, and Mr. Eric Hasegawa for their support of this effort.

References

- Jacobson, K. A.; van Rhee, A. M. Development of selective purinoceptor agonists and antagonists. In *Purinergic Approaches in Experimental Therapeutics*; Jacobson, K. A., Jarvis, M. F., Eds.; Wiley: New York, 1997; Chapter 6, pp 101–128.
 Fredholm, B. B.; Abbacchio, M. P.; Burnstock, G.; Daly, J. W.;
- Fredholm, B. B.; Abbacchio, M. P.; Burnstock, G.; Daly, J. W.; Harden, T. K.; Jacobson, K. A.; Leff, P.; Williams, M. Nomenclature and Classification of Purinoceptors. *Pharmacol. Rev.* **1994**, *46*, 143–156.
 Zhou, Q.-Y.; Li, C.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.;
- (3) Zhou, Q.-Y.; Li, C.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Civelli, O. Molecular cloning and characterization of an adenosine receptor: the A₃ adenosine receptor. *Proc. Natl. Acad. Sci.* U.S.A. **1992**, *89*, 7432–7436.
- (4) van Rhee, A. M.; Jiang, J.-l.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A₃ receptors. J. Med. Chem. **1996**, 39, 2980–2989.
- (5) Jiang, J.-I.; van Rhee, A. M.; Melman, N.; Ji, X.-d.; Jacobson, K. A. 6-Phenyl-1,4-dihydropyridine derivatives as potent and selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1996**, *39*, 4667–4675.

- (6) Jiang, J.-I.; van Rhee, A. M.; Chang, L.; Patchornik, A.; Ji, X.d.; Evans, P.; Melman, N.; Jacobson, K. A. Structure–Activity Relationships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly selective A₃ adenosine receptor antagonists. *J. Med. Chem.* **1997**, *40*, 2596–2608.
- (7) Kim, Y.-C.; Ji, X.-D.; Jacobson, K. A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A₃ receptor subtype. *J. Med. Chem.* **1996**, *39*, 4142– 4148.
- (9) Karton, Y.; Jiang, J.-I.; Ji, X.-d.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Synthesis and biological activities of flavonoid derivatives as A₃ adenosine receptor antagonists. *J. Med. Chem.* **1996**, *39*, 2293–2301.
- (10) Jacobson, M. A.; Chakravarty, P. K.; Johnson, R. G.; Norton, R. Novel selective nonxanthine A₃ adenosine receptor antagonists. *Drug Dev. Res.* **1996**, *37*, 131.
- (11) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; IJzerman, A. P. A novel class of adenosine A₃ receptor ligands. 1. 3-(2-Pyridinyl)isoquinoline derivatives. *J. Med. Chem.* **1998**, *41*, 3987–3993.
- (12) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; IJzerman, A. P. A novel class of adenosine A₃ receptor ligands. 2. Structure Affinity Profile of a series of isoquinoline and quinazoline compounds. *J. Med. Chem.* **1998**, *41*, 3994– 4000.
- (13) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Klotz, K.-N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A. Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A₃ adenosine receptor antagonists. *J. Med. Chem.* **1999**, *42*, 4473–4478.
- (14) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Vollinga, R. C.; Frijtag von Drabbe Künzel, J.; de Groote, M.; Visser, S.; IJzerman, A. P. Thiazole and thiadiazole analogues as a novel class of adenosine receptor antagonists. *J. Med. Chem.* **2001**, *44*, 749–762.
- (15) Ramkmar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A_3 adenosine receptors is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. *J. Biol. Chem.* **1993**, *268*, 16887–16890.
- (16) Walker, B. A. M.; Jacobson, M. A.; Knight, D. A.; Salvatore, C. A.; Weir, T.; Zhou, D.; Bai, T. R. Adenosine A₃ receptor expression and function in eosinophils. *Am. J. Respir. Cell Mol. Biol.* **1997**, *16*, 531–537.
- (17) von Lubitz, D. K. J. E.; Lin, R. C. S.; Jacobson, K. A. Adenosine A₃ receptor antagonists and protection cerebral ischemic damage in gerbils. *Soc. Neurosci.* **1997**, Abstr. 745.16, *23*, 1924.

- (18) Mitchell, C. H.; Peterson-Yantorno, K.; Carre, D. A.; McGlinn, A. M.; Coca-Prados, M.; Stone, R. A.; Civan, M. M. A₃ adenosine receptors regulate Cl⁻ channels of nonpigmented ciliary epithelial cells. *Am. J. Physiol.* **1999**, *276*, c659–c666.
- (19) Avila, M. Y.; Stone, R. A.; Civan, M. M. A₁, A_{2A} and A_3 subtype adenosine receptors modulate intraocular pressure in the mouse. *Br. J. Pharmacol.* **2001**, *134* (2), 241–245.
- (20) Yasuda, T.; Iwamoto, T.; Ohara, M.; Sato, S.; Kohri, H.; Noguchi, K.; Senba, E. The novel analgesic compound OT-7100 (5-*n*-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-*a*]pyrimidine) attenuates mechanical nociceptive responses in animal models of acute and peripheral neuropathic hyperalgesia. *Jpn. J. Pharmacol.* **1999**, *79*, 65–73.
- (21) Miki, S.; Yoshinaga, N.; Iwamoto, T.; Yasuda, T.; Sato, S. Antinociceptive effect of the novel compound OT-7100 in a diabetic neuropathy. *Eur. J. Pharmacol.* **2001**, *430*, 229–234.
- (22) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Moro, S.; Klotz, K.-N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A. Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A₃ adenosine receptor antagonists: Influence of the chain at the N⁸ pyrazole Nitrogen. J. Med. Chem. 2000, 43, 4768–4780.
- (23) Baraldi, P. G.; Cacciari, B.; Moro, S.; Spalluto, G.; Pastorin, G.; Ros, T. D.; Klotz, K.-N.; Varani, K.; Gessi, S.; Borea, P. A. Synthesis, biological activity, and molecular modeling investigation of new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as human A₃ adenosine receptor antagonists. *J. Med. Chem.* **2002**, *45*, 770–780.
- (24) Townsend-Nicholson, A.; Schofield, P. R. A threonine residue in the seventh transmembrane domain of the human A₁ adenosine receptor mediates specific agonist binding. *J. Biol. Chem.* **1994**, *269*, 2373–2376.
- (25) Luthin, D. R.; Olsson, R. A.; Thompson, R. D.; Sawmiller, D. R.; Linden, J. Characterization of two affinity states of adenosine A_{2A} receptors with a new radioligand, 2-[2-(4-amino-3-[¹²⁵I]iodophenyl)ethylamino]adenosine. *Mol. Pharmacol.* **1995**, 47, 307–313.
- (26) Stehle, J. H.; Rivkees, S. A.; Lee, J. J.; Weaver, D. R.; Deeds, J. D.; Reppert, S. M. Molecular cloning and expression of the cDNA for a novel A₂-adenosine receptor subtype. *Mol. Endocrinol.* **1992**, *6*, 384–393.
- (27) Salvatore, C. A.; Jacobson, M. A.; Taylor, H. E.; Linden, J.; Johnson, R. G. Molecular cloning and characterization of the human A₃ adenosine receptor. *Proc. Natl. Acad. Sci. U.S.A.* **1993**, *90*, 10365–10369.

JM010570P